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Nonlinear, two-dimensional magnetoconvection has been investigated numerically for 
a fixed Rayleigh number of lo4, with the ratio g of the magnetic to the thermal dif- 
fusivity in the range 0.4 2 5 2 0.05. As the Chandrasekhar number Q is decreased, 
convection first sets in as overstable oscillations, which are succeeded by steady 
convection with dynamically active flux sheets and, eventually, with kinematically 
concentrated fields. I n  the dynamical regime spatially asymmetrical convection, with 
most of the flux on one side of the cell, is preferred. As Q increases, these asymmetrical 
solutions become time-dependent, with oscillations about the steady state which 
develop into large-scale oscillations with reversals of the flow. Although linear theory 
predicts that narrow cells should be most unstable, the nonlinear results show that 
steady convection occurs most easily in cells that are roughly twice as wide as they are 
deep. 

1. Introduction 
The Sun is the only star on which magnetic fields can be observed in any detail and 

the most striking feature of solar magnetic fields is that they are confined to isolated 
flux tubes. Nearly all the magnetic flux that emerges through the sun’s surface outside 
active regions is compressed into slender ropes, with intense magnetic fields, which 
nestle between the granular convection cells. On a larger scale, active regions display 
a similar intermittent structure. In  order to explain this behaviour it is natural to 
begin by studying the effect of convection on an externally imposed magnetic field in 
a layer heated uniformly from below. 

This paper presents some results of numerical experiments on an idealized, two- 
dimensional model of nonlinear magnetoconvection in a Boussinesq fluid. These 
calculations cover the entire range from a kinematic regime, where the fields are 
sufficiently weak for the Lorentz force to be neglected, to fields that are strong enough 
to suppress convection altogether. In  particular, it is possible to explore the transition 
from the kinematic to the dynamical regime and to  study different aspect ratios and 
planforms for convection. Many features found in this two-dimensional geometry 
occur also in the axisymmetric system that was investigated by Galloway & Moore 
(1979). 

Part 1 (Weiss 1981a, hereafter referred to as I) was concerned with the pattern of 
bifurcation from the static solution and the connection between small-amplitude 
theory and nonlinear convection. For this purpose, the Rayleigh number R was 
increased while the Chandrasekhar number Q was held fixed; this corresponded to 
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raising the temperature gradient with a constant mean magnetic field B,. For this 
paper it is more appropriate to regard the temperature gradient as fixed and to 
investigate the effect of increasing B,; hence Q will be varied while R remains constant. 
This procedure is computationally more convenient too, since R can be chosen to 
ensure adequate resolution in the kinematic regime. The results in these two papers 
can be related by remembering that increasing R is roughly equivalent to decreasing 
Q and vice versa. 

When the ratio, Q of the magnetic to the thermal diffusivity is sufficiently small 
convection first sets in, as Q is decreased, as overstable oscillations at  Q = Steady 
convection is possible for Q < QmaX and the transformation from a dynamical to a 
kinematic regime occurs when Q = Q,, so that Q, < Q,,, < Q(0) when R is sufficiently 
large. The full dynamic range will be explored for a moderate value of the Rayleigh 
number, R = 104, and 0.1 6 6 < 1. The results in Part I implied that Q,,, N R/f; 
(cf. Cowling 1976) and the transition from a kinematic to a dynamical region has 
already been investigated numerically for the simpler Oberbeck problem (Peckover & 
Weiss 1978) and analysed by Galloway, Proctor & Weiss (1978). This transition occurs 
as the field becomes strong enough to exclude motion from the sheets to which magnetic 
flux has been confined, so that Q, - C-tR) (Galloway et al. 1978). At the same time 
the field in the flux sheets reaches its maximum value B,: the numerical results in 9 2 
confirm that B,cc C-02 (Peckover & Weiss 1978). 

The equations governing two-dimensional magnetoconvection were derived in I 
and will not be repeated here. The next section presents results covering the full 
dynamieal regime for R = lo4 and including the transition at  Q,. In  these runs, two 
similar flux sheets are formed symmetrically on either side of a cell. Section 3 investi- 
gates an alternative family of solutions, with most of the flux concentrated into a larger 
sheet on one side or the other, while the convective eddy occupies the rest of the cell. 
Although these spatially asymmetrical solutions transport slightly less heat than the 
symmetrical cells, they seem to be preferred throughout the dynamical regime. As 
Q is increased, convection becomes time-dependent : initially there are oscillations 
about the steady state without reversing the main flow; subsequently these develop 
into full-scale oscillations, whose asymmetry diminishes as Q approaches Q("). For 
large R, linear theory implies that Q ( O )  should be greatest for cells that are elongated 
parallel to the field, so that the ratio, A, of the cell width to its depth is small. When 
R = 104 there is no tendency for square cells to split, but the results in $ 4  show that 
Q,,, is much greater for h = 2 than for h = 1: in the nonlinear regime, flat cells are 
apparently preferred. The paper concludes with an attempt to relate these theoretical 
results to the intermittent structure of magnetic fields in the sun. The model treated 
here is highly idealized but it does shed some light on the behaviour of turbulent 
magnetic fields. 

2. The transition from a dynamical to a kinematic regime 
The model problem is described in I. A particular configuration is specified by five 

dimensionless parameters. These are the Rayleigh number R, the Chandrasekhar 
number Q and the Prandtl numbers r~ and 6, which are defined in equations I(2.9)- 
I(2.11) (where the prefix I refers to the paper I), together with the dimensionless cell 
width A. Nonlinear behaviour is governed by the partial differential equations 
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Q,,, 5 Q(o)  Q'i' Q(e)  

1 - - 467 - 
0.4 1533 635 467 - 
0.2 3 748 1055 467 1050 
0.1 8 343 1920 467 2 100 
0.05 17 641 3661 467 - 

TABLE 1.  Runs with R = lo4, A = 1. 

I(2.12)-1(2.15), which are solved numerically in the region (0 < x < A ;  0 < z < 11, 
subject to the boundary conditions I (2.16)-I (2.18). The results of linear pertur- 
bation theory are summarized in 3 3 of I. It will, however, prove convenient to rewrite 
these expressions so as to provide explicit formulae for critical values of Q when R 
is regarded as fixed. Provided that R > Ro = n4( 1 + h2)3/h4, there is a simple bifur- 
cation from the static solution (corresponding to a marginal state) a t  Q = Q(", where 

the simple bifurcation is preceded by a Hopf bifurcation (the onset of overstability) 
at Q = Q(o),  where 

from I(3.6).  There is a pair of complex conjugate eigenvalues (corresponding to the 
presence of overstable oscillations) for the range Q ( O )  2 Q 2 Q(Q. At Q(i) there is a 
transition to real eigenvalues (corresponding to monotonic, or direct, unstable modes) 
one of which passes through zero at Q("). Thus Q@) < Qti) < QW if (2.2) is satisfied. The 
value of Qci) can be found by solving a cubic equation; for all the cases considered in 
this paper g = 1 and the cubic reduces to 

For all the nonlinear results in Q 2 and 5 3 of this paper, R = lo4 and h = 1 (corres- 
ponding to square cells). Hence R/R, z 12.83 and overstability is possible for 
5 < 0.885. Runs were made with 0.05 < 5 6 1 ;  the corresponding values of Q"), 
Q(i) and QCe) are listed in table 1. Details of these runs, and of all others used in this 
paper, are specified in the appendix. The full dynamical range was investigated for 
5 = 0.2 and 0.1 and figure 1 shows the variation with Q of the Nusselt number N ,  
defined in I(4.3) .  This figure should be compared with figure 3 of I :  decreasing Q has 
an effect qualitatively similar to that of increasing R but for small Q the Nusselt 
number tends asymptotically to the value that it would have in the absence of any 
magnetic field. Finite-amplitude oscillations were found for Q < Q(O);  both the 
maximum value of N ,  Nmax, and the time-averaged value, m, are shown in figure 1. 
As Q decreases, N,,, first rises and then drops as Q approaches Qmax, the highest value 
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FIGUFLE 1. The dynamical range: variation of the Nusselt number N with Q for R = lo4, h = 1 
and (a) 5 = 0.2, ( b )  5 = 0-1. The continuous lines indicate values of N for steady solutions and 
time-averaged values for oscillatory solutions ; the vertical bars show the maximum amplitudes 
of oscillatory solutions. 

of Q for which steady convection can occur. 7 behaves similarly and when Q = Q,,, 
the value of # is slightly less than the value of N for the steady solution. For Q c Qmax, 

N varies smoothly and no sharp transition between the dynamical and kinematic 
regimes can be detected in figure 1. 

This transition can, however, be located by inspecting the amplified field in the flux 
sheets. It is convenient to introduce the dimensionless Alfv6n speed V, = (v[Q)& as 
a measure of the imposed magnetic field and to describe the amplified field by 
V* = (vCQ)& B*, where B* is the peakvalueof the dimensionless field inthefluxsheets. 
In  figure 2(a), V* is plotted against V,. (In dimensional terms this is equivalent to 
plotting B* against B,,.) For 5 = 0.2, the field is amplified by a factor close to 4 when 
Q = Q,,,. Then as V, decreases the amplified field continues to rise until it  reaches a 
maximum, with B* z 9. Thereafter the amplified field falls and eventually enters an 
asymptotic regime where V*oc&(B* z 15). This is the kinematic regime that was 
described in 3 3 of I. If U is the maximum value of I wI then we can define the magnetic 
Reynolds number R, = l J / C  and we expect that B * a  Ri in the kinematic regime. 
From the numerical results we find that B* % 1.2Ri for this particular configuration 
(cf. Peckover & Weiss 1978). 

The transition from a kinematic to a dynamical regime is indicated by the decreasing 
slope of the curve in figure 2(a), as V* approaches its maximum value V,. The change 
can also be seen by inspecting the detailed solutions. In  the kinematic regime 1.1 rises 
linearly from the boundaries and the field has a Gaussian profile in the flux sheets, 
while the vorticity pattern has a single central peak, as in figure 4 (a )  of I. Once V, 2 70, 
the vorticity changes sign in the current sheets and motion is gradually excluded from 
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FIGURE 2. The t,ransition from a dynamical to a kinematic regime. (a) Variation of peak field 
with average field: V* as a function of V, for 5 = 0.2 and 5 = 0-1. The broken line for 
5 = 0.1 is fitted to the kinematic solution derived from that for 5 = 0.2. (b) Variation of the 
maximum field strength V, with <-I. 

regions with strong fields until, for Q z Qmax, the field structure resembles that in 
figure 4 ( b ) .  Indeed, the transverse velocity within the flux sheets is already substan- 
tially reduced when V* reaches a maximum. 

Results obt'ained when g = 0.1 are also shown in figure 2 (a).  From the values given 
in table 1 it can be seen that Q,,, is independent of 5 and that Q,,, is marginally 
greater than Q@), as expected from I .  For Q < Qmax the amplified field V* is a t  first 
independent of 5 but goes on increasing longer with decreasing Q when 5 = 0-1, so 
that the maximum value V, is higher than that for 6 = 0.2, and occurs a t  a lower value 
of V,. A few runs were also carried out with 5 = 0.4 and 5 = 0.05 in order to obtain the 
corresponding values of V,, though the dynamical regime did not develop fully in the 
former case. The maximum fields are plotted logarithmically against the reciprocal 
of 5 in figure 2 (b ) .  The points can be fitted by a straight line such that 

vmcc p . 2 0  (2.6) 

for C 5 0.3. The transition from the kinematic to the dynamical regime has been 
studied in greater detail by Peckover & Weiss (1978) who obtained an almost identical 
power law for Oberbeck magnetoconvection. (In dimensional terms (2.6) implies that 
B, cc 7--O2: for a given R the maximum field attainable in a flux sheet increases without 
limit as 7 -+ 0.) 

Simple physical arguments suggest that this transition occurs when R, - Q2 

(equation I(7.4)). Since U N R2I3 when R % Ro (Moore & Weiss 1973), the kinematic 
regime should extend over the range Q < Q, N g-iR-3 (Galloway et al. 1978). The 
numerical results can be fitted if @Qm k 130. For a given Rayleigh number, V* 
should reach a maximum around the transition from the kinematic to the dynamical 
regime, where V* = V, and 

V, - R*@ ( 2 . 7 )  

(Galloway et al. 1978). The exponent of gin (2.7) is not too far from that in (2.6), which 
was derived from the numerical experiments. 

Unfortunately, the dynamical range in figures 1 and 2(a) is not wide enough to 
establish the existence of any asymptotic regime. The appropriate parts of the curves 
in figure 1 can be fitted by setting Ncc Q-h .  This, combined with the r e s u h  in I ,  
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suggests that the Nusselt number might be given by an expression of the form 

where f (5) is a slowly varying function that increases with 5, 

3. Spatially asymmetrical motion 

Fourier series of the form 
The solutions of the differential equations I(2.12)-I (2.15) can be expanded in 

$(x, z, t )  = C C Ymn(t) sin (mnxlh) sinnm. (3.1) 
m n  

The fundamental mode for the linear problem, and all higher-order terms generated by 
perturbing about the static solution, have the property that 

Ymn = 0 (m+n odd). ( 3 4  

Furthermore, it can be shown (cf. Veronis 1966) that, if the initial values satisfy (3.2), 
then this condition will be satisfied for all subsequent times. The solutions then possess 
symmetry about the point (+A, 4) and this symmetry is preserved by the finite-dif- 
ference schemes provided that N,, N, are both even. The equations are, however, 
solved numerically over the whole region (0 < x < A ;  0 < x < 1) and the symmetry 
may be violated owing to the effect of rounding errors. In fact, the contours displayed 
in I are symmetrical about the centre of the cell and this property provides a useful 
check on the accuracy of the computations. 

It is still possible that solutions satisfying (3.2) may be unstable to small disturbances 
with (m + n) odd, and that these perturbations may grow until they eventually destroy 
the symmetry of the nonlinear solutions. In some numerical experiments such in- 
stabilities did indeed develop. Careful inspection of the results in I shows that, when 
the vorticity is all of one sign and the flux sheets retain a Gaussian profile, the solutions 
remain almost perfectly symmetrical and any asymmetry gradually decays. In runs 
with dynamically active flux sheets, from which the motion is excluded, the solutions 
behave differently. In the examples with [Q = 100, h = 1 and 5 < 0.2, the rounding 
error introduced perturbations with (m + n) odd and these perturbations grew, nearly 
exponentially, on a slow diffusive timescale. When the disturbance became large 
( - 20 yo) it developed faster and the solutions became time-dependent before eventu- 
ally attaining a new, asymmetric steady state. 

The same effect occurs in runs with R = 104 and h = 1, as Q approaches Q,,, from 
below (for example with 5 = 0.2, 700 < Q < 1000 and 5 = 0-1, 100 < Q 6 1960). In  
this regime small perturbations to the static, conducting solution develop into large- 
amplitude, symmetrical convection which is apparently steady (like the solutions 
discussed in 5 2).  Then a gradual transfer of magnetic flux across the cell leads to a 
different steady state. In  this alternative solution most of the flux is concentrated on 
one side of the cell, which acquires a lopsided appearance, as shown in figure 3. Here a 
broad sheet, containing 90% of the total flux, occupies about one-third of the cell, 
while the eddy is confined to the remaining two-thirds. This flux sheet is almost 
stagnant, apart from a weak counterflow driven by the inclined isotherms. Which 
side the sheet appears on, like the sense of the motion, is determined by the initial 
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FIGURE 3. Spatially asymmetrical convection. Contours of $r (streamlines), w ,  T (isotherms) 
and A (lines of force) for R = lo4, Q = 1210, 5 = 0.1. 

I \  

250 500 1000 2500 500 1000 2500 5000 10000 

Q Q 
FIGURE 4. Spatially asymmetrical solutions. Variation of N with Q for ( a )  5 = 0.2, ( b )  5 = 0.0. 
The maximum extent of oscillations about the steady state is shown, together with the different 
maxima for oscillations with reversal of the main flow. 

conditions. The numerical results show no preference for any of the four possible 
orientations. The solution shown in figure 3 was confirmed by stretching the mesh from 
24 to 48 intervals: this change affected the amount of flux in the sheet by less than 
0.2 yo. As a further check, the average values of B, a t  the left- and right-hand boundaries 
were compared. It can readily be proved, by integrating I(2.13) over the region, that 
in a steady state these average values must be equal (Proctor & Weiss 1978). The 
numerical results satisfy this constraint within limits set by the truncation error. 

The lopsided solutions persist throughout the dynamical regime both for g = 0.2 
and for 5 = 0.1. As Q is decreased the asymmetry gradually declines until it disappears, 
inevitably, in the kinematic regime. The variation of N with Q is shown in figure 4: 
t,hroughout the range Q,, c Q < Qmax, the Nusselt numbers for the spatially asym- 
metrical solutions were slightly less than those for the symmetric solutions, as can be 
seen from the appendix. Nevertheless, the former were preferred. This behaviour can 
be explained as follows. At the edge of a dynamically active flux sheet, both the 
normal and the tangential component of the velocity are small. The formation of a 
single large flux sheet at  one side of the cell allows the effective boundary condition on 
the other side to be relaxed. The tangential velocity vanishes on one side only, while 
a healthy thermal plume forms a t  the other. Convection therefore becomes more 
vigorous in the field-free region (for the case in figure 3, the peak velocity is 50% 
greater and the kinetic energy is up by 20 %). On the other hand, the single flux sheet 
occupies a larger proportion of the region (the peak field and the magnetic energy are 
down by 30% and 25% respectively) and so the total heat transport is actually 
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FIGURE 5. Asymmetrical oscillations without reversal of the main flow. Contours of $, w ,  T 
and A at six equally spaced intervals of time during a cycle for Q = 1960,c = 0.1. The contour 
levels remain fixed throughout the sequence. 

reduced. The same physical picture also explains the development of the instability, 
for, if a little flux is peeled off one side, then convection speeds up on that side: hence 
more flux is carried across the cell and the a.symmetry is enhanced. 

As Q is gradually increased the solutions become time-dependent. For Q < Qmax, 
computed in $ 2  above, the sense of motion in the main convective eddy does not 
change. Within the flux sheet, however, there are periodic oscillations. The changing 
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patterns of the velocity, vorticity, temperature and magnetic field are illustrated in 
figure 5. The sense of motion in the subsidiary cell is alternately identical with and 
opposite to that in the main eddy. As a result the main flow is modulated with the same 
frequency and the Nusselt number also varies, with the same period as the velocity. 
At any level N ( z )  oscillates regularly between its maximum and minimum values : 
for the orientation shown in figure 5,  the range of variation in N is greater a t  z = 0, 
where the sheet is compressed, than at z = 1. This range is indicated in figure 4. 
Similar oscillations have been described for convection in a cylindrical cell by Galloway 
(1978) and Galloway & Moore (1979). As they point out, the effective values of Q are 
different in the magnetic and nonmagnetic regions. Thus it is possible for overstable 
convection to develop in the flux sheet and to coexist with steady motion in the rest 
of the cell. The whole flow then oscillates without reversing the sense of motion in the 
main eddy. 

As Q is increased these oscillations grow more vigorous, cf. figure 4 (b) .  Eventually 
they give way to a different kind of oscillation, in which the main eddy reverses during 
the cycle, while the flux sheet undergoes varicose pulsations. Contours of $, w ,  T and A 
for half the cycle with 5 = 0.1, Q = 2890 are displayed in figure 6 .  The countercell 
swells until the main cell is extinguished and the sense of motion is reversed. The 
corresponding variation in the Nusselt number is shown in figure 7 (a). N ( 0 )  is greatest 
a t  about the time of the first set of contours; its value falls almost to unity as the flow is 
halted, and then rises to a lesser maximum near the last set of contours. Thereafter 
it drops to a subsidiary minimum before rising to its initial value. N(1) behaves 
identically except for a phase difference of 180". 

This pattern persists throughout the oscillatory regime. Both maxima are shown 
in figure 3. For 5 = 0.2, the lesser maximum, N,, does not vary significantly over a 
wide range of Q. The greater maximum, N,, rises to a peak and then falls toward N,. 
For Q 2 2500 the oscillations are effectively symmetrical and Nl N,. When 5 = 0- 1, 
N, and N, approach each other as Q + Q ( O ) .  For Q slightly greater than Q"), cells with 
h = 9 are still overstable and the oscillations break up into two (unequal) cells. 

As Q is decreased, the period of the asymmetrical oscillations increases monotonic- 
ally, rising sharply when Q approaches Q,,,, as shown in figure 7(b). A plausible 
conjecture is that the different types of oscillations in figures 3(a )  and ( b )  belong to 
the same solution branch. If so, they must be linked by an unstable portion of that 
branch, since both types can be present at the same value of Q. The transition from 
oscillations in which the flow does not reverse to oscillations with reversal of the motion 
then takes place via a singular oscillation with infinite period, in which the velocity 
just reaches zero (cf. Knobloch & Proctor 1981). 

The same pattern of behaviour was found for axisymmetric convection by Galloway 
& Moore (1979), though the geometrical distinction between the axis and periphery of 
a cell makes any asymmetry harder to discern. The hysteresis in figure 11 of their 
paper seems to be related to the appearance of spatially asymmetric solutions, with 
different types of oscillation like those described here. The transition from symmetrical 
oscillations, like those in figure 8 of I, to spatially asymmetrical solutions, like those in 
figure 6 ,  leads to an apparent doubling of period in N ,  as N, and N, diverge. This is 
quite distinct from the bifurcation discussed in I, which led to temporally asymmetrical 
solutions (see also Knobloch, Weiss & Da Costa 1981), t ha t  retained their symmetry 
in space. 
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FIGURE 6. Asymmetrical oscilla5ions with reversal of the motion. As for figure 5,  
but for a half-cycle only, with Q = 2890. 

4. The horizontal scale of convection 
The results in the previous section demonstrated a preference for asymmetrical 

plan forms in square cells ( A  = I). In this section the effect of varying the cell width h 
will be investigated. In  an infinite layer h can vary continuously and for any configura- 
tion a preferred scale should eventually emerge; in numerical experiments we are 
restricted to discrete values of A. Linear theory implies that for large R narrow cells 
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Q t L M  
h Q ( o )  Q(i) Q ( e )  

stable 
3794 765 564 - 
3748 1055 467 1050 1 

2 1504 426 187 3200 

TABLE 2. The effect of varying the cell width ( R  = lo4, 5 = 0-2). 

5 
f 

are preferred: for example, Q@ is a maximum when 

h = [ ( ~ / 2 n * ) f  - 11-t. (4.1) 

Thus, for R = 104, QCe) attains its maximum value of 604 when h x 0.607. Table 2 
shows the effect of varying h when 6 = 0.2. The critical values of Q for h = 4 and h = 1 
differ only slightly and square cells showed no tendency to break in two. (With < = 0.1, 
the square cell did split into two oscillating cells when Q was slightly less than Q'").) 
According to linear theory, cells with h = 2 are much more stable than those with 
A =  1. 

Things are different in the nonlinear regime. In an attempt to discover the preferred 
horizontal scale several runs were started with 'noisy' initial conditions, obtained by 
adding to the static solution a temperature perturbation proportional to 

6 

m = l  
cos (mnx/h) . 

A test run with Q = 0, h = 2 yielded two nearly symmetrical cells; this was followed 
by a series with Q = 800, < = 0.2 and h = 2 , 3 , 4 .  The run with h = 2 generated an 
initially complicated flow which rapidly developed into a single, slightly asymmetric 
cell. With h = 3, two similar cells appeared, with opposite senses of rotation. One of 
these cells then grew a t  the expense of the other until it eventually occupied about 
60 yo of the region. When h = 4 there were three cells a t  first, but the solution eventually 
settled down to give two more or less equal cells, rotating in the same sense (see figure 3 
of Galloway & Weiss 1981). It seems, therefore, that in the dynamical regime relatively 
flat cells, with h x 2, are favoured. 

The preference for flat cells extended over a wide range in Q .  Figure 8 shows stream- 
lines and lines of force for steady solutions with < = 0.2, h = 2 as Q is increased. The 

10 F L M  I08 
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FIGURE 8. Convection in flat cells. Streamlines and lines of force for h = 2 and 5 = 0.2, and 
(a )  Q = 1000, (6) Q = 1400, ( c )  Q = 1900, ( d )  Q = 2300. The contour levels are the same for 
all four values of Q .  

flow is slightly asymmetrical and magnetic flux is confined to thick sheets from which 
the motion is excluded. As Q becomes larger these sheets expand and the convective 
eddy shrinks: for Q = 2300, it only occupies 40 yo of the region and the rest is virtually 
stagnant. When Q = 2400 steady convection gives way to irregular small-scale 
oscillations. In  figure 9, N is plotted against Q for cells with h = 2 and h = 1.  Through- 
out the dynamical range, N is larger for h = 2 .  Only in the kinematic regime, for 
Q 5 200, does N become larger for square cells. Moreover, steady convection is 
possible for much higher values of Q when h = 2, despite the predictions of linear 
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Note that, unlike figure 1, Q varies linearly here. 

0 500 1000 1500 2000 2500 

FIGURE 9. Subcritical convection in flat cells: N as a function of Q for 5 = 0.2,  and = 1, 2. 

theory. Indeed, steady solutions exist beyond the range of linear instability since, for 
h = 2, Q,,, > Q ( O ) .  

For two-dimensional convection in the absence of a magnetic field, N is greatest, a t  
this value of R, when A z J2 (Fromm 1965; Veronis 1966; Moore & Weiss 1973). 
I n  the presence of a strong field, the preferred horizontal scale is rather wider, around 
A = 2. As figure 8 shows, magnetic flux is pushed aside, leaving a field-free region in 
which convection can take place. The effective value of h for this field-free region is 
then in the range 1 5 h 5 1.5, as might be expected. In  order to accommodate both 
the motion and the stagnant slab of flux, wide cells are favoured in the nonlinear 
regime. 

5. Conclusion 
Spatially symmetrical solutions have been followed through from the onset of 

convection to the kinematic regime. The onset of overstability and the transition from 
oscillatory to steady motion have already been described in I. The results in $ 4  
suggest that, despite inferences from linear theory, steady convection first occurs in 
cells with widths of order unity. For these cells, &ma, may be much greater than Q(") 
(or Rmin much less than R(")), as in the simplified model of Knobloch et al. (1981). 
Symmetrical solutions can be maintained by explicitly imposing the symmetry 
condition (Veronis 1966; Moore & Weiss 1973) but in practice asymmetrical insta- 
bilities grow so slowly that it is not difficult to obtain almost perfectly symmetrical 
results. 

I n  the dynamical regime these instabilities do eventually become important and 
lopsided cells, like that in figure 3, are preferred. The numerical experiments show that 
the branch of steady, symmetrical solutions is unstable, but it is not obvious that there 
exists a finite value of Q a t  which the bifurcation to asymmetry takes place. The 
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transition from steady to oscillatory motion on the asymmetrical branch differs from 
that covered in I and discussed by Knobloch et al. (1981). Instead, there is first a bifurca- 
tion to periodic solutions in which the sense of the main eddy does not change. The 
amplitude of the oscillations then increases until there is a transition to oscillations in 
which the motion reverses, via a critical solution with infinite period. The asymmetry 
is reduced as Q approaches Q(O), but it is again unclear whether there is an actual 
bifurcation at  some Q < Q(0). 

A physical explanation of the development of lopsided solutions was given in $3.  
In  the dynamical regime a symmetrical convective eddy is sandwiched between 
stagnant sheets of flux, which effectively change the lateral boundary conditions so 
that the tangential velocity vanishes instead of the tangential stress. Transferring 
most of the flux to one side of the cell allows the boundary condition on the other side 
to be relaxed, so that convection proceeds more vigorously in the field-free region 
(cf. figure 3). The formation of flux sheets is encouraged by the presence of boundaries 
on which u = 0. However, a run with h = 4 produced two lopsided cells, with the 
principal flux concentration in the centre, away from the lateral boundaries (Galloway 
& Weiss 1981). Thus the preference for asymmetrical cells cannot be ascribed to the 
rather artificial choice of periodic boundary conditions. 

The computations described here were designed to yield regular solutions that were 
either steady or strictly periodic. At higher Rayleigh numbers time-dependent 
behaviour is more common and also more erratic. Runs with R = lo5 are consequently 
more difficult to interpret (Weiss 1981b), and at  larger Rayleigh numbers the finite- 
difference schemes become inaccurate. In  any case, idealized two-dimensional models 
become rather unrealistic at  high Rayleigh numbers. In  the absence of a magnetic 
field two-dimensional rolls become unstable and dynamically active flux sheets are 
probably unstable to varicose modes that lead to the formation of isolated tubes or 
ropes (Galloway & Weiss 1981). 

Nevertheless, one may conclude that nonlinear magnetoconvection favours inter- 
mittent structures. When the average field is strong there may be isolated convective 
eddies in regions where the field is locally reduced, as in figure 8 ( d ) .  For weaker 
average fields, magnetic flux tends to be confined to ropes from which the motion is 
excluded and eventually, in the kinematic limit, flux concentration is limited only by 
diffusion. The preference for spatially asymmetrical solutions in the nonlinear regime 
suggests that in an extensive layer convection may assemble magnetic flux into a few 
large ropes, leaving the rest of the region almost field-free (Galloway & Weiss 1981). 
Moreover, magnetic fields are likely to be intermittent in any turbulent fluid when the 
magnetic Reynolds number is large (cf. Orszag & Tang 1979). 

All these arguments imply that fields in stellar convective zones should be confined 
to  isolated tubes. This is true both of magnetic fields in the photospheric network on 
the sun (Harvey 1977; Stenflo 1977) and offlux emerging through its surface (Golub 
et al. 1980). Any description of the generation of magnetic fields within convective 
zones should therefore take account of this complicated intermittent structure. Further 
progress in studying turbulent magnetic fields requires models that include the effect 
of three-dimensionality, magnetic buoyancy and compressibility, and it is with these 
that future work will be concerned. 
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Appendix 
The list below specifies details of over 120 numerical experiments whose results are 

included in this paper. In each case R = 104 and c = 1; N, = 24 unless stated other- 
wise. Values of Q are followed by corresponding values of the Nusselt number in 
brackets. Symmetrical solutions are listed first: the light-face figures indicate the 
maximum and average values of N for oscillations and the bold-face figures are for 
steady convection. For the spatially asymmetrical solutions, light-face figures indicate 
the two maxima of N for oscillations with reversal of the main flow; bold-face figures 
give values of N for steady convection or, where appropriate, the maximum and 
minimum values for oscillations without reversals of the main flow. An asterisk 
denotes a run with perceptible asymmetry and a dagger denotes solutions in which the 
vorticity does not change sign at  the edges of the flux sheets. The symbol s indicates 
that a run started from the last oscillatory solution settled down to motion without 
reversals of direction in the main eddy; o indicales that a run started from a steady 
(or non-reversing) solution developed oscillations with reversals. 

(a )  XymmetricaZ soZutions ( A  = 1) 

6 = 0.4, 

6 = 0.2, 

300 (2.36*), 275 (2.56), 250 (2*79), 202 (3.04) 

3920 (I), 3600 (1.14, 1-07), 3200 (1.43, 1*21), 3125 (1.49, 1*23), 

2800 (1.74, 1*36), 2500 (1.99, 1-48), 2400 (2.07, 1.53*), 

2200 (2.21, 1.60*), 2000 (2.43, 1*70*), 1700 (2.54, 1-75*), 

1400 (2.60, 1-78"), 1100 (2.4, 1.60*; o) ,  1000 (2.35, 1.41; 1.63*), 
900 (s; 1-79"), 800 (1.92*), 700 (2.07*), 600 (2.22), 500 (2.42), 

45 (4-53-t), 5 (4.92t). 

7840 (1.21, 1-14, 2 cells), 6760 (1.48, 1-28"), 5760 (1.98, 1-47"), 

4000 (2.53, 1*82*), 3240 (2.65, 1*85*), 2560 (2-40, 1-72*), 

2250 (2.43, 1.71"; o ) ,  1960 (2.26, 1.42; 1*58*), 1690 (s; 1*75*), 
1440 (1.89*), 1210 (2.05*), 1000 (2.20); N, = 48: 810 (2.37), 
640 (2.60), 490 (2*87), 360 (3.19). 

361 (2.79), 245 (3*28), 361 (2.79), 245 (3.28); N, = 48: 125 (3*88t), 

g = 0.1, 

6 = 0.05, N, = 48: 720 (2.92), 500 (3.28). 

( b )  Asymmetrical solutions ( A  = 1) 

6 = 0.2, 3600 (1.14, 1-14), 3200 (1.43, 1-43), 2800 (1.74, 1-74), 

2500 (1.99, 1*88), 2400 (2.08, 2.05), 2200 (2.25, 2*18), 2000 (2.42, 2.29), 
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1900 (2.51, 2*30), 1800 (2.60, 2*30), 1700 (2.67, 2-29), 1600 (2.72, 2-28), 

1500 (2.74, 2*27), 1400 (2.74, 2-27), 1300 (2.71, 2*28), 1200 (2.64, 2*26), 

1100 (2.56, 2-18; 0), 1000 (2.45, 2.26; 1.76, 1*56), 900 (s; 1-77), 
800 (1*86), 700 (1.96), 600 (2*06), 500 (2*19), 320 (2-78), 180 (3.58); 
N, = 48: 700 (1.96). 

8410 (1.14, 2 cells), 7840 (1.43, 1.25), 6760 (1.87, 1-40), 

5760 (2.25, 1-54), 5290 (2.38, 1*58), 4840 (2.47, 1-61), 4410 (2.53, 1-63), 

4000 (2.57, 1-66), 3610 (2.57, 1.67), 3240 (2.56, 1*67), 2890 (2.54, 1*66), 

2560 (2.49, 1.64), 2250 (2.45, 1-63; 0), 1960 (s; 2.41, 1-34), 1960 (2.25, 1*55), 
1440 (1-92, 1-81), 1210 (1.97), 1000 (2.10), 810 (2*26), 640 (2.44), 
490 (2*69), 360 (3.26) ; N, = 48: 1000 (2.12). 

5 = 0.1, 

( c )  Flat cells ( A  = 2,  N, = 48) 

6 = 0.2, 2400 (0), 2300 (1*35), 2200 (1.47), 2100 (1.58), 2000 (1*68), 1900 (1.80), 
1800 (1*91), 1700 (1.98), 1600 (2.07), 1500 (2*17), 1400 (2*25), 
1300 (2.32), 1200 (2.39), 1100 (2.48), 1000 (2-56), 900 (2.64), 800 (2.72), 
600 (2*90), 400 (3.10), 125 (3*63), 0 (4.66). 
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